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We examine the evolutionary stability of strategies for dispersal in heterogeneous patchy environ-
ments or for switching between discrete states (e.g. defended and undefended) in the context of
models for population dynamics or species interactions in either continuous or discrete time. There
have been a number of theoretical studies that support the view that in spatially heterogeneous but
temporally constant environments there will be selection against unconditional, i.e. random, dis-
persal, but there may be selection for certain types of dispersal that are conditional in the sense
that dispersal rates depend on environmental factors, A particular type of dispersal strategy that has
been shown to be evolutionarily stable in some settings is balanced dispersal, in which the equilib-
rium densities of organisms on each patch are the same whether there is dispersal or not. Balanced
dispersal leads to a population distribution that is ideal free in the sense that at equilibrium all
individuals have the same fitness and there is no net movement of individuals between patches or
states. We find that under rather general assumptions about the underlying population dynamics or
species interactions, only such ideal free strategies can be evolutionarily stable, Under somewhat
more restrictive assumptions (but still in considerable generality), we show that ideal free strate-
gies are indeed evolutionarily stable. Our main mathematical approach is invasibility analysis using
methods from the theory of ordinary differential equations and nonnegative matrices. Our analy-
sis unifies and extends previous results on the evolutionary stability of dispersal or state-switching
strategies.

Keywords: 1deal free distribution; Evolutionarily stable strategy; Evolution of dispersal; Discrete
diffusion

1. Introduction

How animals select their habitats has been a fundamental question addressed by ecologists.
One possible model is random or unconditional dispersal, with no active choices being made.
Another model is conditional dispersal, where organisms move in response to features of
their environment. One model of habitat selection by conditional dispersal assumes active
movement, such that all animals move around freely until they cannot do any better in terms
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of resource acquisition. The distribution thus produced is the ‘ideal free distribution’ of Fretwell
and Lucas [1]. The original model was modified by Parker [2] to allow the suitability of habitat
(i.e. the abundance of resources per animal) to diminish as the density of animals increases.
In a landscape where the input of new resources is distributed unevenly, the population of free
individuals develops a matching distribution, and ideal free distribution therefore develops
into an inhomogeneous pattern such that each animal has the same resources available to it as
every other animal.

Cressman ef al. [3] recognized the game theoretic aspect that is implicit in the ideal free
distribution because animals move in response to the locations of other animals. The authors
used game theory to show that the ideal free distribution of a metapopulation inhabiting a two-
patch environment is an evolutionarily stable strategy in the sense that it cannot be invaded by
another species with similar ecological features but with a different pattern of distribution.

An important result from Cressman et al. [3] is that in single species and predator-pery
models, and in some competition models, the ideal free distribution that arises is the same
as the distribution that would arise when movement between patches is not allowed. In other
words, if the populations follow the ideal free distribution, they have the same equilibrium
values they would have in the case that the patches were isolated from each other, so that if
the population were initially distributed to match the single patch equilibria there would be
no movement between patches.

In a different line of research on the evolution of dispersal, Hastings [4] showed that for
animals dispersing randomly in spatially heterogeneous but temporally constant environments
with logistic dynamics in each patch there will be selection for lower dispersal rates, so that the
only evolutionarily stable strategy based on random movement is the one where the dispersal
rate is zero. Similar results have been obtained for other types of models [5-7]. The reason
why random dispersal is not favored in heterogeneous environments is that it results in over
exploitation of resources in some patches and underexploitation in others. If there is no move-
ment between patches then the population on each patch will equilibrate at carrying capacity.
McPeek and Holt [5] found that there are patterns of conditional dispersal in heterogeneous
patchy environments which allow movement between patches but are evolutionarily stable.
Those patterns have the feature that if the population on each patch is at the equilibrium it
would attain in isolation then there is no net movement between patches. That type of condi-
tional dispersal is known as balanced dispersal [8, 9]. It implies that at equilibrium individuals
in any patch will have the same fitness, namely zero, because all populations are at carrying
capacity. Since no individual can increase its fitness by moving to another patch, this is a
type of ideal free distribution. The notion of balanced dispersal leading to an evolutionarily
stable ideal free distribution is not restricted to models of physical dispersal in space. A similar
phenomenon has been observed emerging from simulations of consumer/resource systems
where the resources can switch between defended and undefended states [10~12].

Here we will investigate the connections between evolutionary stability and ideal free dis-
tributions arising from balanced dispersal or the equivalent state-switching strategy. We will
not use game theory explicitly; instead, we will examine the invasibility of systems at ecolog-
ical equilibrium under different sorts of dispersal strategies. The formulation of our results is
fairly general; we can treat single species models, competition models, and consumer/resource
models on n patches in either continuous or discrete time from the same viewpoint. It turns
out that under rather general conditions the only possible evolutionarily stable strategies are
ideal free. The conditions under which an ideal free strategy can be seen to be evolutionarily
stable are somewhat more restrictive but still are satisfied in many reasonable models. Related
results for single-species models on 1 patches have been obtained in [13-15], but our analysis
unifies and extends those, and allows for multiple species. Technically our approach is based
on using the theory of nonnegative matrices to determine the stability properties of systems of



Downloaded by [University of Miami] at 10:31 24 July 2012

The ideal free distribution 251

differential or difference equations arising in the analysis of the invasibility of equilibria by a
small population using a different dispersal or state-switching strategy.

The paper is structured as follows: in section 2 we formulate the models and state our main
results, in section 3 we apply them to a number of different systems and scenarios, and in
section 4 we give a brief nonmathematical discussion of our conclusions. The proofs of the
main results are given in the Appendix.

2. Modeling framework and main results

2.1 The basic models

The models we will consider describe deterministic population dynamics and species inter-
actions together with transfer or movements of individuals among a discrete set of states or
patches. In most of the literature on the ideal free distribution, individuals are envisioned as
dispersing among patches, but the same modeling framework applies to cases where they can
shift been different states (e.g defended vs. undefended; see [10-12]) or life history traits.
The models are systems of differential or difference equations where the state variables are
population densities indexed by patch or state and perhaps by species. The patches or states
generally are not assumed to be identical, but that possibility is not excluded, and in fact
may arise naturally in certain cases that will describe later. Movement rates are assumed to
be constants, as in the case of discrete diffusion, but the rate of movement between patches
(or states) may depend on the specific patches, We will consider situations where systems
involve multiple species but only some of those species present variants with a new dispersal
(or state-switching) strategy. Thus, we will formulate our continuous-time models as

duyg; - .
—a;i = Fua@uy + Y _[dfuy —dSuy) for i=1,...,n and k=1,...,m, (1)
j=l
J#E
where i, j = 1, ..., n indicate the patch or state, k = 1, ..., m indicates the species, and
w= (1,2, -.., U is the vector of densities of all species on all patches or in all states.

Thus, holding the first subscript on u constant at k and sweeping through the second subscript
from 1 to n yields the vector of densities of the kth species on patches 1 through 1. On the
other hand, holding the second subscript fixed at i and sweeping through the first from 1 to m
yields the vector of densities of the 1st through mth species on patch i. The system (1) can be
written as

du
»«d—tf = Fe(w) + Aguty 2)
where wy, = (g1, ... iten) 7> Fe) = (F@ug, .. ., F@ug)T, and Ay = ((a{‘j)) with
df; for j s i
k _ n
4ij = —Zd’g’i for j = i. &)
i

We will always assume df‘j > 0 for all i, j, k. The coefficient df‘j describes the rate at which

individuals of species & move from patch or state j to patch or state i. In some modeling
situations we may want to take Aj = 0, indicating that the kth species does not move or
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change state. Otherwise we will assume Ay is irreducible, so that all individuals have access
to all possible patches or states. A special case of (1) occurs if we envision the kth species
as a single consumer population that consumes resource species in all patches or states. That
might occur if the consumer species operates on a larger spatial scale than the resource and
in effect experiences the entire environment as a single patch. Normally that sort of scenario
would be described by using a single equation for the consumer population, but such a for-
mulation would not fit our modeling framework (1). An equivalent model for a situation can
be formulated in the framework of (1) by using n copies of the appropriate single equation
with the same initial conditions; e.g. by using Ay = 0, Fy;(u) = Fy(u) fori = 1,...,n, and
assuming 1 (0) = u(0) fori = 1, ..., n. In that case the system (2) reduces to n copies of the
equation
duy,

= = Pl “

with uy; = uy for i =1, ..., n. In such a case u; would normally be viewed as a uniform
density across patches or states, so that Fy; (u) = Fi (1) could depend on u¢; for any or all £
and j.In many other cases F; (u) would depend only on ug; for £ = 1, ..., m since population
dynamics and species interactions would be assumed to occur within patches.

Models analogous to (1) also can be formulated in discrete time. Suppose that at each time
step the populations in patch or state k reproduce or interact and then disperse. The models
would then take the form

n n
w(t+1) = [ 1= D% | Fulu + > Df Fyj(wyuy
j=1 j=1
Jzi o
for i=1,....,n, k=1,...,m. 5)

The terms in (5) correspond to those in (1), except that D{‘j denotes the fraction of the population
of species k in patch or state j that moves to patch or state i in each time step. Thus, we still
must have D¥ > 0, but we also must have

ij —
n
ZD,’-‘jslforj:l,...,n,k::l,...,m. (6)
i=1
i#j
We also must assume Fy; > 0 in (5). As in the case of (1), we may assume that for some £k,

Df‘J =0 for all {, j. This again describes the case where the kth species does not move or
change state. By defining B, = ((b},)) with

i

Df; for j #i
14 - n
Pi=11-3 Dk forj=i @
=1
(i
we can write (5) as
w(t+1) = B F(u(®)), k=1,...,m &)

in analogy to (2).
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Note that models of the form (1) or (5) leave the nonnegative orthant invariant. We will
assume that the functions Fy; are all of class C2. In the cases we consider we will assume
that the system (1) or (5) has at least one stable nonzero equilibrium if there is no movement;
equivalently we will assume that (2) and (8) have at least one stable nonzero equilibrium
if A =0 or By = I, respectively for k = 1, ..., m. All of our results about evolutionary
stability will be framed in terms of such ecologically stable equilibria.

2.2 Ideal free strategies, invasibility, and ESS’s

We envision situations where a small number of individuals using a new movement or state-
switching strategy attempt to invade a system which is at equilibrium. Suppose that the attempt
at invasion is made by species k =1, ..., £, while species k = £+ 1, ..., m are not sub-
ject to the invasion attempt. Let v = (vyy, ..., ven)T and w = (wyy, ..., we,)T denote the
vectors of population densities of the resident and invading species, respectively, and let
Y= e+nts oo ymn)T denote the vector of densities of species not subject to invasion. In
the basic models (1), (5) we would then have u = (}). Let u* = (;:) denote an asymptot-
ically stable equilibrium of the original system (1) or (5) in the absence of dispersal that is
nontrivial with respect to the species that are subject to the invasion attempt in the sense that
up; =vp; #0fork=1,...,£andi = 1,..., n. It follows that for (1) we have

0= FuW", k=1,...,¢ i=1,...,n, 9
while for (5)

1=F,@", k=1,...,¢ i=1,...,n, (10)
We will use u** = (;:: ) to denote a generic equilibrium for (1) or (5).

DEFINITION A dispersal strategy is ideal free (relative to u*) if there is no net movement of
population when u = u*; that is, in (1), if

n
S oldhuy —dhup =0, k=1,....¢6 i=1,...,n (11)
j::l
J#E
and in (5)
n
0= huy; =Dhugl, k=1,....¢ i=1...,n (12)
j=1
i

The reason why such strategies correspond to a version of the ideal free distribution is that
at the equilibrium u* all individuals of species 1 through 1 in all patches have equal fitness
(namely 0) if fitness is measured by the local recruitment rates Fy;, and at equilibrium there
is no net movement of individuals of those species between patches (or states). Neither of
these need be true for generic movement or state-switching strategies. The definition of ideal
free strategies is given in terms of only those species corresponding to k = 1, ..., [ because
we will sometimes want to consider cases where some of the species in (1) or (5) are using
strategies that are (or are not) ideal free, while we do not restrict the strategies of other species.

Remark 1If a dispersal strategy where some dispersal rates are nonzero is ideal free relative to
u* then for species 1, . .., £ we must have Lz,fj #O0forall j=1,...,nif u}*c‘j # O for at least
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one value of i. Thus, the conditions (9) and (10) are reasonable for nontrivial equilibria that can
admit ideal free dispersal strategies in the sense of (11) and (12), respectively. This observation
follows from (11) or (12) and the assumption that the matrices A, and By, describing dispersal
are irreducible if they are nonzero. Consider the case of (11). Suppose that uy; 7 0 for some
j butthat u};, =0 forsomei % j. Let/ = {1,...,n} and let I; € I be the subset of / such
that u}; = Ofori € I;. We then would have I} # @and I; # I.1f{ € I, then (11) and the fact
u* is an equilibrium imply

n
0= Z[d{‘juzj — dbup] + Fy g, = Zd{-‘juzj.

j=1 jgh

J#
By assumption we would have uy; > Oforall j ¢ I; sowe musthave d,"j =0foriel,j ¢,
which would contradict the irreducibility assumption on the dispersal matrix Ag. Thus, to avoid
contradiction, we must have u}; = 0 foreitheralli € I orfornoi € /.1t follows that (9) must
hold for any equilibrium that is nontrivial and can admit an ideal free strategy. The case of
discrete time, (10) and (12), is similar.

If a small population of individuals using a different dispersal (or state-switching) strategy
will increase when introduced to a system at an equilibrium #™* = (;Z:) then the system is
invasible by that strategy. If the small introduced population cannot increase then the system
is not invasible. We envision situations where. the invading population w is small relative to
the equilibrium v** of the resident population v but where w and v are ecologically equivalent
except for their movement (or state-switching) strategies. Thus, we assume that the invaders do
not initially have a significant effect on the resident equilibrium except to augment it with their
own population. This is plausible only if the resident equilibrium is stable, since otherwise
any small perturbation could cause the system to move away from the equilibrium.

DEFINITION  Suppose that u™ = (;:i ) is an asymptotically stable equilibrium of (1), and the
invaders w = (wyy, ..., We,)| are using strategies ((c?,-kj)), k=1,...,L The system (1) at
equilibrium w** is invasible by w if w = 0 is unstable relative to nonnegative initial data in
the system

dwg s 5 .
— = 2 ldywy = djwa) + Fa 0™ A w,yDwg, k=1,...8 i=1,..,n (13)
J=1
J#
If w = 0 is stable relative to nonnegative initial data in (13) then the equilibrium u** is not
invasible by w. If w** is an asymptotically stable equilibrium of (5) then the system (5) at
equilibrium u™ is invasible by w if w = 0 is unstable relative to nonnegative initial data in
the system

n
wa(t+1) = [ 1= 37D | Fat™ +w(),yw()
-
ﬁ'#i
n
+ Y DEFG O™ +w(),y M we(t), k=1,...,¢ i=1,...,n. (14
=l
J#
If w = 0 is stable relative to nonnegative initial data in (14) then the system at equilibrium
u** is not invasible by w.
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We will sometimes just say that the equilibrium u** is or is not invasible by w without
referring explicitly to the systems (1) or (5).

DEFINITION A dispersal strategy (df.‘j) in(lyor (D,l"j) in (5) (respectively) with corresponding
asymptotically stable equilibrium u™* = (;:: ) is evolutionarily stable with respect to v if it is

not invasible by any small population w using another strategy, where invasibility is determined
Sfrom (13) or (14).

We will use ESS as the standard abbreviation of evolutionarily stable strategy.

2.3 Main results

Again, letv = (11, ..., o))" w = Wi, - we) Ty = Geits -0 Vo)
Define F(v,y) to be the vector function F(v,y) = (Fu(,y),..., Fe(v,y))T. Denote by
V, F the Jacobian of F relative to v, so that V, F is an £n x £n matrix.

THEOREM 1 Suppose that u* = (;:) is an isolated asymptotically stable equilibrium for (1)

in the absence of dispersal or state switching, i.e. in the case where d,’-‘j =0 foralli, j, k, so
that u* satisfies (9). Suppose that V, F (u*) satisfies.

wI VE,W"w < —y|w|* _ (15)

forsome y > 0 and any w € Rﬁf‘ with |w| sufficiently small, where IRS_" is the nonnegative
orthant of R*". Then any strategy that is ideal free relative to u* in the sense of (11) and for
which u* is asymptotically stable is an ESS relative to v.

Suppose that u* is an isolated asymptotically stable equilibrium for (5) in the absence of
dispersal or state switching, i.e. in the case D{‘j =0 foralli, j, k, so that u* satisfies (10).
Suppose that (15) holds forw € lRﬁf’ with |w| sufficiently small. Then any strategy that is ideal
free relative to u* in the sense of (12) and for which u* is asymptotically stable in (5) is an
ESS relative tov.

Proof See Appendix.

The condition (15) will play a central role in our analysis. It implies the evolutionary stability
of ideal free strategies in the sense of noninvasibility. (Recall that we define invasibility and
noninvasibility in the context of (13) or (14)). We will sometimes refer to (15) as an evolutionary
stability condition.

Remarks 1In general it is not clear how (15) is related to the stability of u* in (1) or (5).
However, if v = u, so that there is only one invading species, and Fy; (v, y*) depends only on
v; = uy; o that population dynamics for v occur within patches, then (15) simply requires that
Fy; (v, y*) is strictly decreasing in v; fori = 1, ..., n. In that case v* will be an asymptotically
stable equilibrium of the (uncoupled) system

dv .
5 =70y (16)

- b

In the analogous discrete time case the condition that Fy; (v, y") is strictly decreasing in v; for
i =1,...,nisnotsufficient for stability. Furthermore, it is conceivable that either (1) or (5)
might admit Turing instabilities. It is also conceivable that the ideal free property rules out
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Turing instabilities, but as far as we know that is an open question. We will revisit these points
in our discussion of particular cases in the next section.
To continue our analysis we need the following results from matrix theory:

LEMMA 1 Suppose that A is an N x N matrix with nonnegative off-diagonal entries, and
that u € RY is a vector with all components positive. Denote the ith components of Au and
uTA by (Au); and (w'A);, respectively. Suppose u € R.

W If
| (Ad); = pu;, i=1,...N (17

or
(@A) = puy, i=1,...N (18)

then A has a real eigenvalue X > [ with nonzero nonnegative eigenvector.

(i) If u is an eigenvalue for A or AT with eigenvector u then any other eigenvalue A of A
(or AT) has real part Re)h < pi.
(Note that u is an eigenvector for AT ifuTA = uu’.)

Proof See Appendix.

We can now continue our discussion of the systems (1) and (5) and their linearizations. Let
u* = (v*, y*) be ideal free as in Theorem 1. Since Fi;(v*,y*) = 0in (1) and F(v*,y*) =1
in (5), the linearizations of (13) and (14) around w = 0 include only dispersal terms, so that
the linearization of (13) is

— =A 19

% W 19)
where A is the block-diagonal matrix with the matrices Ay as defined in (3) on the diagonal
fork=1,...,£ We may apply Lemma 1 to A. Note that (1,..., DA =(0,...,0)s001is
an eigenvalue for A and no other eigenvalue has positive real part. Hence w = 0 is neutrally
stable at the linear level. Similarly, the linearization about w = 0 in (14) is

w(t + 1) = Bw(2), 20)

where B is the block diagonal matrix with matrices B on the diagonal as in (7). In this case
(1,...,DHB =(1,..., 1), so no eigenvalue of B has real part greater than 1 by Lemma 1, so
again w = 0 is neutrally stable at the linear level.

Next we consider the case of resident population & = (}) at an equilibrium & = (;::)
where v** % 0 and where v is using a strategy that is not ideal free relative to u*™*. For (1)
in such a situation we must have Fi;(u*™)v;; # 0 for some k € {1,... £} and i € {1,...,n}
since otherwise the strategy used by v would be ideal free relative to u**. Similarly we must
have Fy; (u**) # 1forsomek € (1,...,l}andi € {1, ..., n} in the case of (5). Note that the
linearization of (13) around w = 0 is

dpii - N :
=Y hpy — dpul + Fa@™pa, k=18 i=1...n @)
j=1

J#i
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Similarly, the linearization of (14) aboutw = 0 is

n n
priCt+ 1) = [ 1= D% | Fu@™)pu + ) D Fiy ™) piy,

j=1 j=1
J#i J#
k=1,...,¢ i=1,...,n. (22)

Both (21) and (22) decouple relative to the species index k. Our second main result is that if
the resident population of species k is using a dispersal or state switching strategy that is not
ideal free relative to u** then that population can be invaded by some small population usmg
another strategy, so that no strategy which is not ideal free can be an ESS.

THEOREM 2 [fthe system (1) (respectively, (5)) is at an equilibrium u** where the population
of the kth species is nonzero, and the resident population of species k is using a strategy that is
not ideal free, then there is a strategy ciikj (respectively, l~),"j) that can be chosen by an invading
population of species k so that 0 is unstable in (21) (respectively, (22)) for thatk. Thus, w = 0
is linearly unstable in (13) (respectively, (14)). The invading strategy can be chosen to be ideal
free with resepect to any asymptotically stable equilibrium u* of the system corresponding to
(1) (respectively, (5)) without movement or state-switching. Thus, no strategy that is not ideal
free can be an ESS.

Proof See the Appendix. B

Remarks Results related to Theorems 1 and 2 have been obtained in various contexts by
various researchers. McPeek and Holt [5] found in simulations of discrete time logistic type
(specifically Ricker) models for a species inhabiting two patches that strategies satisfying (12)
were evolutionarily stable. Derivations of the ideal free distribution as an ESS (and many other
results) based on explicitly game theoretic ideas were given for continuous time models for
one or two species on two patches in [3, 16, 17].

In the case of two competitors, Cressman et al. [3] and Krivan and Sirot [16] observed that it
was possible to obtain a unigue ESS with nonzero populations of both species on both patches
only if the coexistence equilibrium was stable. We will explore this point further in examples,
but it is worth nothing that the hypotheses of Theorem 1 involve stability conditions and that
Theorem 1 allows the possibility of distinct stable equilibria for the system without dispersal
or strategy switching, with associated ideal free distributions that are ESS’s which are also
distinet.

Padrén and Trevisan [13] showed that the ideal free distribution was an ESS in the case
of a logistic continuous time model for a single species on an arbitrary number of patches.
Cressman and Krivan [14] derived a similar result by different methods in the single species
case where the growth rate F;(it;) on each patch is decreasing. Kirkland et al. [15] obtained
analogous results for single species models in discrete time. The conditions for nonivasibility
in [15] are formulated differently than ours or those given in [13, 14] but in their system the
equilibrium is stable if it exists, and their condition on the dispersal/strategy-switching terms
can be seen to be equivalent to (12).

In our formulation the cases of d,"j == ( and Df‘j = ( for all i, j qualify as ideal free in the
sense that they satisfy (11) and (12), respectively. There are a number of results indicating
that in situations where there is spatial variation in habitat quality but where dispersal is
independent of location, i.e. is ‘unconditional’ in the terminology of McPeek and Holt [5],
the slowest disperser has an advantage. This was shown for models $imilar to (1) by Hastings



Downloaded by [University of Miami] at 10:31 24 July 2012

258 R. Cantrell et al,

[4], for reaction—diffusion models by Dockery et al. [6], and for integrodifferential models by
Hutson et al. [7]. It was observed in numerical simulations of discrete time models by McPeek
and Holt [5]. In our models the corresponding situations would be where di"j = dk or D{‘j = Dk
foralli, j but where uy; 7 uj; forsomei and j. In our terminology we would consider d* = 0
or D¥ = 0 to be ideal free, so those choices would be ESS’s if u* had the necessary stability
property (15). This is consistent with the results of Hastings [4] and McPeek and Holt [5]. We
do not consider reaction—diffusion or integrodifferential models here.

2.4 Variations on the models and analysis

We have focused our attention on the scenario where a small population using a new pattern
of dispersal or strategy switching is attempting to invade a resident population at equilibrium.
Other sorts of perturbations are possible. Suppose that we consider a system that might be far
from equilibrium or where a fraction of the existing population changes its pattern of dispersal.
In such cases the description of the process given by (13) or (14) are not adequate. We would
need to consider in place of (13) the system

dug <=, 4 :

_El—t]i = Z[d{‘jvkj — dj?ivki] + Fri(v +w,y) g
o

dwk- -

—&f = jg[d,-l}wkj - df,'wki] + Fri(v +w, y)wy
J#i

fork=1,...,¢ i=1,...,n, and

(23)

n

dy; . ,

—g—:—' = E iyey — dSyul + Fa@ +w, )y k=£+1,...,m, i=1,...,n.
—
iR

The analogous system in the discrete time case is

vt +1) = | 1= )" Db | @) +w(), y@)vu ()
j=1
J#E

+ > DEFG () + w(e), y@) vy ()
=l
JF#i

n
we(t+ 1) = | 1= )" DY | Fuv(@®) +w(@), y()wii (1)
st |
o
n
+ Y DEFG (@) +w(t), y())wis (8)
=1
i’#i
fork=1,...,¢ i=1,...,n, and
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wi+1) = | 1= Dk | Fa(e) +w(e), )y ()
j=1
J#

+ 37 DEFy000) + w(e), y(0)yig (1)
=l
J#

fork=L+1,...,m, i=1,...,n. (24)

Suppose that 1y = ( ;g) is an equilibrium for (1) or (5) in the absence of dispersal or state

switching, so that (9) or (10) holds. Suppose further that the strategies (d,.’j.) or (D{‘j) are
ideal free relative to uf, i.e. satisfy (11) or (12). Consider a situation in (23) or (24) where
some subpopulation wq of v} changes to a different strategy ((7{3.) or (Df;) that is ideal free
relative to ug. Since the strategy used by wy is ideal free relative to ug, it is easy to see that
(v§ — wo, wo, yg) is an equilibrium of (23) or (24). (This follows because if v + w = v§ then
Fui(v+w,y5) = Fu (v, ¥3) = Fri(ug).) Hence, such a perturbation shifts the system to a
new equilibrium, where it remains unless otherwise perturbed. In that sense the equilibrium
5,0, yg)T of (23) or (24) is neutrally stable with respect to ideal free perturbations that do
not increase the total population of any species on any patch (or in any state.)

Suppose we do not restrict (c?ikj) to be ideal free. If (23) is linearized about (vj, 0, y’g)T then
the terms py; corresponding to w in the linearization satisfy

d n - . .
o= [y —dipl, k=18 i=1...n (25)
j=1

JEi
Analogously, for (24) we would have

n n
pri(t+1) = | 1= D% | pu®)+ ) D piy ).
j=1 j=1
stéi §#i

Using matrix notation as in (2}, the system (25) can be written as

dp -
A
a - P
where A is the block diagonal matrix with diagonal blocks Ax given by (Ez{"j), k=1,...,¢,

where the entries &,"j are defined relative to the coefficients c?ikj of (25) as in (3). The off-diagonal

terms in A are nonnegative; also, (1, ..., 1)A = 0. If the matrix A’ obtained by replacing the
diagonal terms of A with zeroes is irreducible, it then follows from the general theory of non-
negative matrices that A’ and hence A must have a unique eigenvalue with real part larger than
any other eigenvalue and characterized by having positive left and right eigenvectors [18, 19].
Thus, the eigenvalues associated with eigenvectors having nonzero components in the terms
corresponding to w in the linearization of (23) about (v, 0, y§;) must all have nonpositive real
parts. In that sense the linearization of (23) about (v, 0, %)7 is neutrally stable with respect
to perturbations where the terms p corresponding to w in (23) are nonzero. The case of (24)
is analogous. This neutral stability at the linear level is why we need to consider higher order
terms in the analysis underlying Theorem 1.
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3. Examples and discussion

3.1 Framing the issues

Theorem 2 of the previous section shows that under quite general conditions any dispersal or
state-switching strategy which is not ideal free can be invaded by certain other strategies, some
of which are ideal free. It follows that in a wide range of models only ideal free strategies can
be evolutionarily stable, Theorem 1 gives conditions under which an ideal free strategy will
be an ESS in the sense of noninvasibility, but those conditions impose specific requirements
which vary in detail from system to system and which do not hold for some common types of
models.

The issues that arise in continuous time and discrete time models are mostly similar; the only
obvious exception is that equilibria for discrete-time single-species models may lose stability
via routes that are not present in continuous time single species models. For that reasons we
will focus our attention mainly on how Theorem 1 does or does not apply to continuous time
models for a single species, a set of competing species, or a consumer/resource system. The
collection of examples is not intended to be exhaustive, but merely to illustrate the scope and
limitations of the theory.

3.2 Single species models .

If we consider only a single species we may omit the species index k and write
uw=(ui, ..., iu;)T. We do not need the notation & = (v,y) and we can identify u with v
in the notation of section 2.

Suppose that we are in the continuous-time case (1) and that the population dynamics in
each patch depend only on the density in that patch, so that F; (u) = F;(u;). Suppose further
that F;(u}) = 0 and u} > O for each i, so that u = (u], ..., u;) is an equilibrium for (1) in
the absence of dispersal or state switching. Any strategy A = (d;;) that is ideal free relative to
w* will be an ESS if the evolutionary stability condition (15) holds. In this case (15) becomes

> Fuhw} < —ywl? (26)

i=1
which will be true if and only if
FuH)<—-y, i=1...,n @n
Condition (27) is the condition for asymptotic stability for u; = u} > 0 in the equations

dut;
— = Fu)u, i=1,...,m (28)
dr
Furthermore, if we consider the linearization of (1) about u* in this case, we have (in notation
analogous to (2))

d
a’l—‘ = Au + VF @, (29)

where V.F(u*) is the diagonal matrix with entries F}(u})u} on the diagonal as in (15). Let
fi=—min{F/(uu} +a;,i =1,...,n}). Suppose A is irreducible so that A + VF (u*) +
fiI is a nonnegative irreducible matrix. By the general theory of nonnegative matrices
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[18, 19] A + V.F@i*) + fi1 will have a unique positive principal eigenvalue Aq with positive
eigenvector u. Also, we have

[A+ VF@")]u = (Ao — f1)u, (30)

and any other eigenvalue A of A + VF(ii*) has ReA < Ag — fi. Let fo = —max{F/(u})uf,
i=1,...,n}. We have

(Au); = o= fi+ fus, i=1,...,n, (31)

so by Lemma 1, A must have a real eigenvalue A; > Ao — f1 + f>. On the other hand
(1,...,1DTA = 0 so any eigenvalue of A must have real part less than or equal to zero.
Thus, 0> Ay > A — f1 + f2 or

A — fi £ —fo=max{F/uuf, i=1,...,n}<0. (32)

Hence, by (27), the eigenvalues of A + V.F(ii*) must have negative real parts if u] > 0 for
each i, so u* is stable in the full system (1).

1t follows that in the continuous-time single-species case with population dynamics all
occurring within patches, condition (15) implies not only that u* is stable in (28) but also in
(1). The logic behind the argument is similar to that which is used to show that single species
models do not support Turing instabilities.

In discrete time models that situation is somewhat different. The condition (15) does not
necessarily coincide with the stability condition for an equilibrium u* of

u(t +1) = Fu®) = Fa@)Tu@). (33)

Consider the case of a single species on a single patch. In the case of the Beverton—-Holt
model F;(u) = a; /(1 + b;u), it is well known that there is a unique globally stable positive
equilibrium for each equation in (33) with ¢; > 1. On the other hand, the Ricker model
Fi(u) = exp(a; — bju) has period doubling bifurcations leading to chaos as a; increases (see
[20]). Both models satisfy (15), but in the case of Ricker dynamics our theory applies only
when u* is stable.

It is worth noting that there may be more than one stable equilibrium u* for (28) or (33),
and if so there will be different ideal free strategies associated with the different equilibria.
This could happen in the case where the functions F; are bistable, i.e. if on each patch there
is an Allee effect so that ¥ = 0 and u = u] > 0 are both stable equilibria.

Discussion: There has been a considerable amount of work on single species models. An
important class of models are spatial logistic models. In the continuous case those would
have F;(u) = r;(1 — [u/K;]). In the discrete case there are various possible ‘logistic’ models,
but the Beverton—Holt and Ricker models described previously are popular. They can be
written in terms of carrying capacities by taking F; (1) = r; /(1 + [(r; — 1)/ K;lu) and F; (u) =
exp(r; (1 — [u/K;]), respectively. In logistic models the only possible stable equilibrium is
u* = (K4, ..., K,). In that case the condition for dispersal to be ideal free is

In the two-patch case this reduces to the well-known relation dy2/da) = K,/ K> for ‘balanced
dispersal,’ as derived by McPeek and Holt [5] in simulations of coupled pairs of Ricker models
with stable equilibria. (In a later paper [21] they considered the case where the Ricker models
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had complex dynamics and found that the simulation there was quite different.) Padron and
Trevisan [13] obtained results similar to those of this paper for continuous time logistic models.
Cressmann and Krivan [14] obtained such results for continuous time single species models
with F;(u;) decreasing for each i. Kirkland et al. [15] obtained similar results (formulated in
slightly different terms) for a class of discrete time single-species models including Beverton-—-
Holt type models.

3.3 Competition models

Typical models for competition between species assume something like logistic self-limitation
on each species (arising from intraspecific competition) and a negative impact of each species
on the growth rate of the other species (arising from interspecific competition.) A continuous

time nonspatial model for the densities i1, .. ., u,, of m competitors would have the form
duy
— = L uy, k=1,...,m,
& Jug

with the functions Fj, satisfying

% <0 for k&=1,...,m,

Oltp
usually with strict inequality for k = £. (In the Lotka—Volterra case 8 Fy, /du¢ will be a nonpos-
itive constant for each k and £.) Suppose that the competitors inhabit a system of n patches but
that interactions occur only within patches, and let i1; denote the density of the kth competitor
on the ith patch. The spatial model is then

ditg; LS. '
—a?" = Fii (u1i, o Umi)Upi + Z[d,{}ukj — dfuil,
z o9
k=1,....,m, i=1,...,n,
with
0 Fy;
SH <0 forall i,j,h k. (35)
aLl./,j

(Note that 9 Fy; /duy; = 0if i # j.)

Suppose that 1* is an isolated asymptotically stable equilibrium for (34) in the case where
a’,"j =0 for all i, J, k. If the coefficients d,"l satisfy the ideal free condition (11) relative to u*
then u* is still an equilibrium for (34), and if the coefficients are small it will still be isolated
and asymptotically stable. In some competition models it is possible for spatial heterogeneity
and dispersal to interact in ways that change the dynamics of the model. This point is noted
by Cressman et al. [3] in a game theoretic treatment of the ideal free distribution on two
patches. Related results for reaction—diffusion models of competitions on spatially hetero-
geneous regions are obtained in [22, 23]. Thus, in the case of competition, the requirement
that u* must still be stable in the model with dispersal imposes a genuine restriction. It may
be possible to rule out destabilization by dispersal in some competition models, but we will
not address that issue here. In any case, continuity of eigenvalues implies that the asymptotic
stability of u* is unaffected by small perturbations of (34). We can consider cases where some
or all of the competing populations are subject to an attempted invasion by other populations
of the same species with different dispersal strategies. Suppose that we want to consider a
situation where small populations of competitors with indices k = 1, ..., £ attempt to invade.
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We would take v = (uy,...,us)" andy = (uer1, ..., u,) in the formulation of Theorem 1.
Suppose that the resident populations are using a strategy that is ideal free relative to 1* in
the sense of (11). All the entries in V, F'(u*) are nonpositive by (35). If (for example) each
species is logistically self-limiting so that 8 F; /0uy; < —y < 0 for u = u* then (15) holds,
so any strategy that is ideal free relative to u* will be an ESS in the sense of noninvasibility
by Theorem 1. Any strategy that is not ideal free will be invasible by some ideal free strategy
by Theorem 2.

In general, u* need not be uniquely determined. Models such as (34) may have multiple
stable equilibria; for example, in the case of two species with strong competition the equilibria
with only one competitor present may both be stable. Thus, there may be several different types
of strategies which are ideal free relative to different equilibria, and the resident equilibrium
may be determined by the order of coloniation of the system. A similar observation was
made by Krivan and Sirot [16] in a two-patch model; see also [3]. The case of discrete time
competition is similar to the continuous time case in most respects, so we will not discuss it
in detail. As for single-species models, the main difference is that some extra conditions may
be needed to insure the stability of equilibria.

3.4 Consumer/resource or predator/prey models

We will consider a number of different situations involving consumer-resource or predator—
prey systems. In most models for consumer-resource systems the resources are assumed to
have some type of self-limitation, but that is not always the case for the consumers. This point
turns out to be relevant in establishing the evolutionary stability condition (15) of Theorem 1
in some cases. In particular, if there is no self-limitation on the consumers it is possible for
the system to have an asymptotically stable equilibrium for which (15) does not hold.

Another issue that may be relevant for consumer-resource systems is the possibility of
Turing instabilities, but as we noted previously an asymptotically stable equilibrium will not
be destabilized by the addition of dispersal or state-switching to the model if the coefficients
d,’j or D,"J are sufficiently small.

The first case we will consider is where members of the resource or prey species may
disperse or switch between defended and undefended states, but the consumers or predators
do not. This case is motivated by the systems studied in [10-12], where the resource species
had inducible defenses. In the case of state-switching by resource species it is natural to think
of the consumers as a single population without a state structure and hence without movement
between states. In the case of dispersal among patches by the resource species, the situation
where consumers do not disperse among patches could occur if consumers are sessile (as in
some aquatic systems), or if they experience the matrix between patches as more difficult to
cross than it is for the resources, or if they form groups that defend territories. If we write
u = () where v is a vector of resource/prey densities and y the vector of consumer/predator
densities, with both indexed by i, then a typical consumer/resource model would have the form

dU,'

P fiu)vi — gi(ui, y)yi

d (36)
%:(Gi(v,y,-)wa,‘)y,', i=1,...,l”l

where f; would usually be logistic and g; would be a functional response of some sort. In
the case of local interactions between populations on distinct spatial patches we would take
G (v, y) = e;g(v;, ¥;). To describe the case of a single consumer population interacting
with resources in various states (or a single consumer population distributed uniformly across



Downloaded by [University of Miami] at 10:31 24 July 2012

264 R. Cantrell et al.

patches) we would take G; (v, ¥;) = G;(¥) = Z’szl e;g;j(v;) anda; = aforeachi.Inthatcase
the consumers would satisfy n copies of the same equation, sotheset{y : y1 = y2 = -+ - = y,}
would be invariant, and all equilibria for (36) would have y in that set. (We would assume that
any initial data had y in the set.) The full model corresponding to (36) is

dv' n
—d[‘ = fiw)vi — & i, Yy + Y _(dijvj — djivi)
e 37)
dy; G .
e =(Giv,y) —a)dy;, i=1,...,n

Ifu* = ( ;: ) is an asymptotically stable equilibrium of (36) which is also asymptotically stable
in (37) and the dispersal or state-switching strategy ((dj)) is ideal free, it will be an ESS by
Theorem 1 if (15) holds. If we write g; (v, yi)y; = h;(ui, yi)v;y; (which is possible for all
standard forms of the functional response) then V, F in (15) is an n x n diagonal matrix with
diagonal entries d f; /dv; + (8h; /3v;)y; evaluated at v = v*,y = y*. Thus, (15) holds if

df, 6/’11 )
dv; ov; Yi

and in that case a strategy that is ideal free with respect to v relative to u™ will be an ESS by
Theorem 1.

Condition (38) is related to the stability condition for an equilibrium of (36) in some cases.
Suppose that in (36) G; (v, y;) = e;g:(v;, y;), so that the system decouples into n pairs of
equations. Dropping the index i and computing the Jacobian for the linearization of such a
pair at a positive equilibrium (where we use the equilibrium conditions to simplify) yields

()] [ ()]
w \a /)Y [T \5 )Y
3(hv) (8_lz>
RAF “\ay )

evaluated at the equilibrium (v*, y*). If g = hv is independent of y and is nondecreasing in
v, as in the Lotka~Volterra or Holling type 2 cases, then the matrix in (39) has the form

P Q
2 2)

with Q < 0 and R > 0. Thus, the eigenvalues A = (P &/ P? + 4R(Q)/2 have negative real
parts if and only if P < 0, which is equivalent to (38). Hence, in those cases, (15) is automat-
ically satisfied for any asymptotically stable equilibrium of (36). This is analogous to what
happens in the single species case.

In the case of dispersal among patches, as opposed to state-switching, it makes sense to
consider cases where the consumers also disperse and may change their dispersal strategies. For
the cases where consumers can move we will assume that G; (v, y;) = ¢;g;(v;, y;) foreach i.
We will simply state condition (15) for the cases where only consumers move and where both
consumers and resources move. We will deviate slightly from our standard notation in the first
of those cases by continuing to denote consumers by y and resources by v even though the

<v* <-y, i=1,...,n (38)
y*)
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consumers are the organisms that can disperse and can select dispersal strategies. In the case
where only consumers move the condition (15) is equivalent to

0g;
2 (V*)S——y<0, i=1,...,m 41

e- [P
’ 0y
y*

This condition cannot be satisfied unless the functional response g; is consumer-dependent,
e.g. in the Beddington-DeAngelis case. However, if the equations for the consumers are
modified to include density-dependent mortality so that in (36) y; satisfies

dv
% = (e:gi (v, yi) — ai — biyi)yi (42)
then (41) would become
ag; .
eig‘j“bi 4 S—Y <0, i=1...n (43)
i (y)

which will be satisfied if b; > 0 and g; does not depend on y;. Conditions (41) and (43)
are consistent with the asymptotic stability of the linearized system based on (39) but for
most standard types of models some additional conditions are still required. However, both
(41) and the presence of density-dependent mortality in (42) reflect some sort of intraspecific
competition or interference by consumers.

If both consumers and resources are allowed to disperse and G; depends only on v; and y;
then (15) will hold if and only if the matrices

fi_fi_ ah,~ . / 8hi .
du; \ 3y )7 T\ By )

M; = (44)
/ a/’l,' 3/1,‘
g | i+ ”"a_ui eivia_yi' (v:)
J

have the property w” M;w < —y|w|? for all nonnegative w = (w;, w,)” for each i. Recall
that g; = v;#; so the term e;v;(dh; /0y;) is equivalent to e;dg; /9y;. Thus, for (15) to hold we
must require both (38) and (41), so that the functional response must be consumer-dependent.
As in the case where only the consumers move, we could avoid that requirement by adding
density-dependent mortality as in (42). A comparison of the matrices in (39) and (44) shows
that the form J can be obtained by multiplying the first row of M; by v and the second by y.
Such a modification can stabilize or destabilize the corresponding linear system, so although
the matrices for stability in (36) and for condition (15) are related, the connection between
(15) and stability is not clear in general.

4, Discussion

' QOur approach to assessing the evolutionary stability of dispersal or state-switching strategies

in terms of invasibility allows us to examine a number of different types of models from the
same conceptual viewpoint. That generality enables us to gain some insight into the properties
that determine the evolutionary stability of strategies across a variety of systems. On the other
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hand, our approach is not based on behavioral mechanisms such as optimal foraging [24], does
not explicitly formulate models in terms of evolutionary game theory [3] and does not give
any insight into what, if anything, those strategies that are stable in the sense of noninvasibility
might optimize [13]. Thus, the trade-off for obtaining a level of generality that allows us to
draw some broad conclusions about many systems and types of models is that we cannot
obtain as much detailed information about the mechanisms involved in specific systems.

It turns out that in many situations the strategies which are predicted to be evolutionarily
stable have some of the features of the ideal free distribution [1], and of balanced dispersal
[5,8,9]. Specifically, they have the features that at equilibrium the fitnesses of populations in
different patches or states all have the same value (namely zero) and there is no net movement
of individuals between patches or states. These features are present in the strategy of no
movement at all. If strategies are constrained (for example, by requiring all rates of dispersal
to be equal even though patches differ in quality) it may be that the only evolutionarily stable
strategy under the constraint is that of no dispersal at all. This observation is consistent with
the results of [4~7].

We derive both necessary and sufficient conditions for a strategy that admits an ecologically
stable equilibrium to be evolutionarily stable. The ideal free/balanced dispersal property is
necessary under very general conditions. Essentially, if there are differences in fitness between
patches when the system is at equilibrium, it is possible to devise strategies that can invade
the resident strategy. The sufficient conditions for an ideal free strategy to be evolutionarily
stable are more subtle. They appear to require something like self-limitation via intraspecific
competition or density dependent mortality. These are standard assumptions in single species
models and models for competition, but they are not always present in consumer/resource
models. Self-limitation can sometimes have a stabilizing effect on models but it does not rule
out the possible destabilization of equilibria by Turing instabilities or other effects.

In the case of single species models in continuous time our sufficient condition for the
evolutionary stability of strategies that are ideal free with respect to some equilibrium implies
that the equilibrium must be ecologically stable, with or without dispersal. In discrete-time or
multi-species models the stability of the equilibrium is not guaranteed and generally must be
assumed as a separate hypothesis.

All of the models we consider treat space or the set of possible states as being discrete
and finite. Our analytic methods do not extend directly to models where the solution space is
infinite dimensional, such as reaction—diffusion or integro-difference models, or even spatially
discrete models with infinitely many patches. It would be of interest to know whether results
analogous to ours can be extended to the infinite dimensional case.
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Appendix

Proof of Theorem I Suppose that w is a solution of (13) in R’+" with v*™* = v*, y*™ = y*,
Let

Vw) = ZZwk, (A1)

k=1 i=I

We have (by summing (13)overkand i,k =1,...,L,i=1,...,n),

dv(w) = ZZFL:(V +w, Y wy

k=1 i=l
=ZZ Fiy (" ,y)+ZZaU 0y wn Fo(wh) | wy  (A2)
k=1 =1 h=1 j=1 071

=wl V,F (", y)w + o(Iw|?)
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letW,={we R’+” » V(w) < ¢}. Since V(0) = 0 and u* is isolated we can choose ¢ small
enough that w = 0 is the only equilibrium of (13) in W, and w? V, F(v*, y*)w + o(Iw|?) < 0
forw e W, w 0. It follows from (A2) and the invariance of RQ_" in (13) that w — 0 as
t — oo, which proves the theorem in the case of (1).

The ideas behind the proof for (5) are similar to the case of (1) but there are a few differences
in the details. If we compute V (w) for (5) we get

!

VO +1) =) > Fu®® +w,ywe (). (A3)

k=1 i=I1

We have

Fi V" +w,y") = F v,y )+/ Zza il (v + 5w,y )wds (A4)

=] je=l1 Uhj

so since Fi; (v*, y*) = 1, multiplying (A4) by wy;, summing k = 1,...,landi =1,...,n,
then substituting into (A3) yields

1
VWt +1) = V@) + / wl VEW@* + sw,y*)wds
0

so that for ¢ small and w € W, we have

V)t + 1) = Vw)(t) < —(y/2w@)?
< —=(y/6O)V )T (A5)

Since R’j is invariant we have V > 0, so by (A5) V(w)(t) — Vp > 0 as r — co; but again
by (AS5),0 < (—y/2) VO2 so we must have Vj = 0. This completes the proof.

Proof of Lemma I Recall that if B is a positive N x N matrix then by the Perron—Frobenius
theorem B and BT have aunique positive eigenvalue A; (B) which is equal to the spectral radius
of B and is characterized as the unique eigenvalue for B or BT with a positive eigenvector.
Furthermore if XA is any other eigenvalue of B then ReX < X;. (See, for example, [18,19]).
Choose Ry large enough that A + Ry / is nonnegative and it + Ry > 0.Let ((g)) bethe N x N
matrix with all entries equal to &, and suppose & > 0. If (i) of (17) holds then for B = A +
Rol + ((g)) we have

(Bu); = (Au)i +(Ro+&)u; = (W+ Ro+e)u; >0 for i=1,...,N. (A6)

It follows from (A6) that

N N
D (Bu)} = (u+Ro+e) ) ul (A7)

i=1 i=1

so that | Bull = (u + Ry + &)lju]|. Hence the spectral radius of B is greater than or equal to
#+ Rg+¢&,50A1(B) =+ Ro + €. The eigenvector corresponding to A;(B) is positive. If
we normalize the eigenvector and let & — O it follows by continuity that A 4+ Rgl has an
eigenvalue A > u + Ry, with nonnegative eigenvector. Since the eigenvalues of A and A +
Rol have the same eigenvectors and since A is an eigenvalue of A if and only if A = A + Ry
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is an eigenvalue of A 4+ Ry/, the conclusion of (i) follows. The argument for the case (18) is
analogous. Suppose (ii) holds. Choose B as above; then

n
0< (Bu) = (u+Ro)u; +&y u; for i=1,...,N (A8)

j=1
So

N

N N 2
D (B <) | (o RoYuf +[26(u+ Ro) + ] (Z u.—)
i=1 f=1

i=l

N
< (0 + Ro)® + N[2e(u + Ro) +£°D) ). (A9)

i=1

It follows that the spectral radius of B is less than or equal to (1t + Rg)? + N[2e(iu + Rg) +
212,50 11 (B) < ((u + Ro)? + N[2e(iu + Ro) + £2])'/2. All other eigenvalues A of B have
Re)d < A1(B). As ¢ — 0 we have that ReX < u + Rp for any eigenvalue of A + IRy, so
Re) < u for any eigenvalue of A. The case where u is an eigenvalue of A” is analogous.

Proof of Theorem 2 In notation analogous to that of (2) we can write the part of (21)
corresponding to the kth species as

dp - .
a!’t. = Awp + Fe(u™)p = Mp, (A10)

where the entries of A, are as in (3) with d{‘j replaced by ‘?zl}’ Fr = (Fuu™), ..., Fo,@*)),

and M is the matrix obtained by adding the terms F; (™) to the diagonal terms c”z,", of /ik,
Since u™* is an equilibrium of (1) we have

n

0= [dfvgr —dbvi 1+ Fu™ust, i=1,...,n. (A11)
i=!
J#

Summing (Al1) over i yields

n
0= Fu@™)u. (A12)
i=1
Some of the terms in (A12) must be nonzero since the resident strategy is not ideal free, so at
least one must be positive, so Fy; (™) must be positive for some i. Without loss of generality
assume Fp (™) = Fy > 0. If we compute Mp, for the vectorpg = (1, ¢, .. ., &) e R, the
first entry is

n n
D die— ) dii+Fo. A13)
j= =
The ith entry in Mp, is
. n - n -
dfy+e| > dh = dh + Fu@™ |. (A14)

j=2

j=2 =t
J#i J#E
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For § > 0 sufficiently small, there are strategies ((ci,.';.)) withd;; > 8 > Ofori = 1,..., nthat
satisfy
n .
> _df < Fy/3. (A15)
j=2

For any such strategy we can take > 0 sufficiently small so that the quantity in (A13) is larger
than Fo/3,andfori = 2, ..., n the quantities in (A14) are all larger than §/2. For such choices
of py and ((d,-’j.)) we have ‘

(Mpo)i > Sopy; for i=1,....n, (A16)

where o = min{Fy/3, §/2}. It follows from Lemma 1 that M has an eigenvalue greater than
or equal to §o > 0 with a nonnegative eigenvector. Thus, p = 0 is unstable in (A10), with the
unstable eigenvector nonnegative. Since the only restrictions on the coefficients d,"j are that

the d;;’s must be positive but satisfy (A15), they can be chosen to be ideal free relative to any

stable equilibrium u*. (If ((c?,.’j.)) is ideal free relative to u* then so is ((sc?,.kj)) forany s > 0, so

we can always choose ideal free dispersal terms to be as small as we want.)
The analysis for the case (22) is similar to that for (21). We can write the part of (22)
corresponding to the kth species in form of (8) as

Pt + 1) = BF@™p, (1) = Lp, (o). (A17)

We have (from (5) and the fact u™* is an equilibrium)

Wk k gy FEY R k Ly Y 4y v
vy = 1— E D | Fii ™)y + E Dj; Fyj(u )vkj fori=1,...,n.
j=1 j#
J# J#
Summing over i, we have

n n
Do =) Fu@)y (A18)
i=1 i=1

If the resident strategy is not ideal free then not all of terms Fy; (u**) can be equal to 1, so at
least one must be larger than 1 by (A18), and again we may assume that Fp; (**) > 1. The
first entry in Lp, from (A17)is

n n
1= D | Fu@™)pu + ) D Fij(u™) py (A19)
j=2 j=2
and the ithentry fori = 2,...,nis
Di1 Fii ™) pr1 + Z D,{‘}ij @ py +|1- Z ﬁf; Fri ™) pri. (A20)
i p
As in the continuous time case, we can choose pp =1, ppy = e fori =2,...,n, and D{‘j

positive and small in such a way that the expression in (A19) is larger than (I — &) Fj; (™)
for some & > 0 such that (1 — §) Fy (w**) = 1+ 3§y > 1. Also, the expressions in (A20) are
larger than D,{‘, Fry (™), which will be larger than (1 + &p)e if > 0 is sufficiently small. Thus,
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the ith component of L(1, ¢, ...,&)T will be larger than (1 + &) times the ith component
of (1,4,..., &), s0 by Lemma 1 the matrix L will have an eigenvalue larger than or equal to
1 + 8o with a nonnegative eigenvector. Thus, p, = 0 is unstable with respect to such a strategy.
Again, the only restrictions on the coefficients ij are that some must be positive but small,
so the invading strategy can be chosen to be ideal free relative to an arbitrary equilibrium u**
of the system (5) without dispersal or state switching. This completes the proof.



